
Parallel heterogeneous Branch and

Bound algorithms for multi-core and

multi-GPU environments

Defended by Imen Chakroun

Under the supervision of Pr. Nouredine Melab

October 2010 - June 2013

Outline

 Context and objectives

 Contributions
 GPU-accelerated parallel B&B - Application to FSP

 Heterogeneous B&B combining GPU and multi-core

 HB&B@GRID: a distributed heterogeneous B&B

 Conclusions and Future Works

2

Exact Combinatorial Optimization

 Minimize or maximize an objective function f(Ω): Ω ↦ R

 Find x* ∈ Ω such that f(x*) = (min or max) f(x) / x ∈ Ω.

 Find optimal configuration(s) among a finite set Ω of candidate
solutions.

 High-dimensional and complex optimization problems exist

in many areas of industry

 Task allocation, job scheduling, network routing, cutting, packing, etc.

3

The permutation Flowshop Scheduling

Problem (FSP)

 Scheduling a pool of N jobs on a set of M machines

– Jobs have to be processed on the machines on the same order.

– A machine Mk(k = 1,2,...,M) can handle at most one job at a time.

 Objective

- Find a processing order on each

Mk such that the time required to
complete all jobs is minimized.

4

Branch and Bound Algorithms (B&B)

 B&B is a search algorithm based on an implicit
enumeration of all candidate solutions.

 Exploration is performed by building a tree.

 Branching = splitting into sub-problems.

 Bounding = computing lower/upper bounds.

 Selection = choosing the fragment node to explore.

 Pruning = eliminating unpromising branches.

5

Illustration on FSP

 Scheduling 3 jobs on 4 machines
  3! = 6 candidate solutions

 For 50 jobs on 20 machines
  50! candidate solutions !!!!

6

 Efficient bounding is not sufficient for large instances

 Several years of computation for Ta056 [Mezmaz et al., IPDPS 2007]

Massive parallelism is required to deal with very large instances.
 All the parallelism levels provided through today’s heterogeneous platforms
[Top500] should be exploited

 Parallel B&B models [Melab 2005]

 Multi-parametric parallel model

 Parallel tree exploration model

 Parallel bounding model

 Parallel evaluation of a single
solution/bound

 Parallel bounding model
 Highly data parallel and attractive

for SIMD architectures (e.g. GPU)

 Parallel tree exploration model
 Massively parallel but highly

irregular  challenging for GPU +
multi-core

B&B process

B&B process
B&B process

B&B process

Parallel models for B&B

…

Evaluation of bounds

Evaluation of a single bound

7

Parallel Branch and Bound algorithms

 The implementation of the models is influenced by the target
execution platform [Roucairol 1996, Bader 2004]

 Many architecture-oriented contributions have been proposed:

 Networks or clusters of workstations [Quinn 1990, Tschöke 1995, Aida
2002].

 Shared memory machines [Mans 1995, Casado 2008].

 Graphics Processing Units [Carneiro 2011, Lalami 2012].

8

 Few existing works related to B&B on GPU
  Among the two pioneering works

 No works on parallel heterogeneous (GPU + multi-core) B&B

Objectives

 Revisit the design and implementation of B&B algorithms for GPU-
enhanced multi-core environments.

 The heterogeneous B&B should be portable in a transparent way
on laptops, workstations, clusters and computational grids.

9

 Dealing with challenging issues related to:

 GPU computing: thread divergence, hierarchical memory
optimization, CPU-GPU data transfer, …

Multi-core computing: synchronization, ...

Hybrid computing combining GPU and multi-core: work sharing, …

Heterogeneous cluster and grid computing: portability, scalability, …

Contributions 10

 GPU-accelerated parallel B&B Application to FSP

 Heterogeneous B&B combining GPU and multi-core

 HB&B@GRID: a distributed heterogeneous B&B

Outline 11

 Context and objectives

 Contributions
 GPU-accelerated parallel B&B - Application to FSP

 Heterogeneous B&B combining GPU and multi-core

 HB&B@GRID: a distributed heterogeneous B&B

 Conclusions and Future Works

12

Kernel 1
execution

Allocate Device Memory

Mem2

Mem1

DMem1

DMem2

Mem1

DMem1

DMem2

CPU code

Mem2

Kernel 1 call

Allocate Device Memory

Copy

Copy

CPU code

CPU (host)

GPU (device)

 Data must be transferred between CPU
and GPU via the PCI bus express …

 … many data transfers might become a
bottleneck for performance [Mahmoudi
2013]

General GPU-based parallel model

13

 Kernel execution is invoked by
CPU over a compute grid …

 … split in a set of thread
blocks

 All threads within the grid run
the same program

 Single Program Multiple Data

Grid

Block (0,0) Block (1,0)

Block (1,1) Block (0,1)

Block (1,1)

Thread (0,0) Thread (1,0)

Thread (0,1) Thread (1,1)

Programming model: thread-based SPMD

Thread (2,0)

Thread (2,1)

14

CPU scalar op GPU Multiprocessor

Execution model: SIMD

 GPU architectures are based on hyper-threading

 Fast context switching …

 … between warps when stalled (e.g. an operand is not ready)

 … enables to minimize stalls with little overhead

 Single instruction executed on multiple threads (SIMT)
grouped into warps (32 threads)

Thread divergence issue

Full efficiency achieved when all threads agree on their
execution path

 If threads of a warp diverge via a data-
dependent conditional branch …

 … the different branch paths
(threads) are executed serially

 When all paths complete

threads converge back to the same
execution path

15

GPU

Constant
Memory

Texture
Memory

Global
Memory

Block 0

Shared Memory

Local
Memory

Thread 0

Registers

Local
Memory

Thread 1

Registers

Block 1

Shared Memory

Local
Memory

Thread 0

Registers

Local
Memory

Thread 1

Registers

CPU

Memory type Access latency Size

Global Medium Big

Registers Very fast Very small

Local Medium Medium

Shared Fast Small

Constant Fast (cached) Medium

Texture Fast (cached) Medium

- Different hierarchical
memory levels …

- … with different sizes and
latencies

Hierarchical memory levels
16

GPU-accelerated B&B based on parallel

bounding (GB&B)

 Generation (selection and
branching) and pruning of the
subproblems …

 … are performed on CPU

 Evaluation of their lower bounds …

 … is executed on the GPU device

17

 Bounding consumes on average 97% - 99% of the B&B
execution time

Thread divergence in FSP

 Lower bound proposed by [Lenstra et al. 1978] based on [Johnson 1954]

 Divergence related to the control flow instructions (if-then-else, for, …)

 When the first thread executes else
branch, the remaining threads are
disabled

 All threads finish the first 10
iterations together + two passes for
the 90 other iterations

18

Reducing thread divergence

Branch refactoring = rewrite the conditional instructions into an
uniform code

19

I. Chakroun, M.Mezmaz, N. Melab, and A.Bendjoudi. Reducing thread divergence in a GPU-accelerated branch-and-bound
algorithm. Concurrency and Computation: Practice and Experience vol 25, 8, 1121-1136, 2013 - John Wiley & Sons.

Memory access optimization

Mapping of the LB data structures on the memory hierarchy
of the GPU

 GPU memories have different sizes and
access latencies

20

 Complexity analysis: The LB function uses
6 data structures with different sizes and
access latencies/frequencies

Memory access optimization (Cont.)

 Memory size issue

 Nvidia Tesla T10 Processor with 16 KB of shared memory

Which data must be put in the shared memory to get the best
performance?
different explored scenarii.

21

N. Melab , I. Chakroun, M. Mezmaz and D. Tuyttens. A GPU-accelerated Branch-and-Bound Algorithm for the Flow-
Shop Scheduling Problem. 14th IEEE International Conference on Cluster Computing, Cluster'12 (2012)".

 JM and LM do not fit into the shared memory which size is limited

Experimental settings

 Taillard's FSP benchmarks proposed in [Taillard 1993]

 Optimal solutions of some of these instances are still not known

 Divided into groups of 10 instances defined by the same N and M

 Only the instances where M = 20 and N = 20, 50, 100, 200 are considered

 Instances with M = 5 and 10 are easy to solve

 Instances with 500 jobs do not fit in the memory of the GPU

 Software and hardware platforms

 C-CUDA 4.0.

 CPU host: Intel Xeon E5520 quad-core 64-bits server

 GPU device = Nvidia Tesla C2050

 448 CUDA cores, warp size = 32, global memory = 2.8GB, configurable shared
memory (16 KB or 48 KB)

22

Performance evaluation of GB&B

• Speedup up to 71.69 is obtained

• Speedup grows with the size of the
problem

• The pool size has a high
impact on the performance of
GB&B

23

 the pool size has to be tuned dynamically with respect
to the problem being solved.

Performances evaluation of GB&B (Cont.)

24

 Thread reduction approaches

 Best reported speedup is 77.46

 Divergent branches on average 3 times less

 Data access optimization

 PTM on shared memory …. enhancement of 19%

 JM on shared memory …. acceleration of 97.83

 JM and PTM on shared memory ….. 23% of improvement
compared to the scenario with no data access optimization

 Speedup of 100 is reached for large problem instances

Performance analysis of GB&B 25

 Time consumption analysis of the different steps …

 First, the pool size should be dynamically tuned

Second, the CPU-GPU transfer latency should be minimized

An adaptive selection operator:
Adaptive Selection Heuristic (ASH)

 Calibrates the two parameters …
 Maximum number of threads and

blocks

26

 The ASH heuristic

 The number of threads per
block is doubled repeatedly …

 … until the maximum number
of active threads allowed on
the device is reached

 A downwards and an
upwards search around the
best pool size found so far

Performance evaluation of the ASH heuristic

Same speedups obtained with the same best pool sizes of the static version

27

262144

262144

8192

8192

0 20 40 60 80 100 120

200x20

100x20

50x20

20x20

Speedups

Ta
ill
ar
d
’s

 in
st

an
ce

s

Performance analysis of GB&B

 First, the pool size should be dynamically tuned

Second, the CPU-GPU transfer latency should be minimized

28

 Time consumption analysis of the different steps …

GPU-based parallel tree exploration

 Moving to GPU the branching and pruning operators

 Even if they consume less time than the bounding operator, they
allow to reduce the data transfer between CPU and GPU

Higher performances should be achieved

 Two proposed and studied approaches

 Multiple-nodes driven approach

 Each thread performs in parallel B&B operators on multiple tree nodes

 Single-node driven approach
 Consecutive data-parallel kernels where threads compute in parallel the same

amount of work on a single tree node

29

I. Chakroun and N. Melab. Operator-level GPU-accelerated Branch and Bound algorithms. International
Conference on Computational Science, ICCS 2013. Barcelona, Spain, June 5-7, 2013.

Multiple nodes-driven approach

 Divide the search space
into disjoint sub spaces

 To each thread is assigned a
node from the selected nodes.

 Mapping strategy (next slide)

 Each thread builds its local
search tree by applying the
branching, bounding and
pruning operators to its
assigned node

 Resulting nodes are moved back
to CPU. Other nodes
are deleted on the device
memory

30

Thread 0 Thread 1 …. Thread n

3.1.3
GPU
Device

1

Pending
nodes Select

Original
problem

Copy host
to device

Best-sol

Copy host
to device

Solve

CPU

Update

If leaf
node

If internal
node

2

3.1

3.2

3.1.2

3.1.5

3.1.4

3.2.1

3.2.3

3.2.2

Multiple nodes-driven approach (Cont.) 31

 Mapping strategy

 Thread i branches the node i of the pool, thread i+1 branches the
nodes i+1, and so on.

 Each thread writes the nodes it generates in an allocated range:
position of thread i depends on the number of children of
the thread i-1

 Challenging issues

 Uncoalesced memory accesses

 Thread divergence due to the high irregular nature of the tree

How much irregularity in the B&B?

Intra-instance irregularity

Structure of the search tree for the instance
Ta023: 20 jobs on 20 machines

 At the same level (depth 10) …

 53% of nodes have 0
children, 23% have 1 child,
11% have 2 children, etc.

 At different levels

 41% of nodes have 17
children at depth 2 vs. 1% at
depth 3

32

 Solution: single node-driven approach

Single node-driven approach

 The same amount of work on each tree

node

 Branching kernel

 Each thread generates a unique child and

inserts it into a global pool

 Bounding kernel

 The pool is kept in the global memory and

used by the bounding kernel

 Each thread assigns a lower bound to a

unique node

 Pruning kernel

 The evaluated pool is kept in the device

memory and used by the pruning kernel

33

3.1.3

GPU
Device

1

Pending
nodes Select

Original
problem

Copy host
to device

Best-sol

Copy host
to device

Solve

CPU

Update

If leaf
node

If internal
node

2

3.1

3.2

3.1.2

3.1.5

3.1.4

3.2.1

3.2.3

3.2.2

Branch

Bound

Prune

Branch Branch

Bound Bound

Prune
Prune

Single node-driven approach (Cont.)

 Mapping strategy

 Thread i writes the generated node i in the position i

 All threads execute exactly the same flow of instructions

 Prevents from thread divergence

 The approach prevents from
the uncoalesced accesses to the
global memory

 Memory accesses constitute a
contiguous range of addresses.

34

Speedups obtained with different GPU-based

approaches

 GPU-based parallel tree
exploration using the single
node-driven approach …

 … allows further speedups (up
to 160.41) than the GPU-
accelerated B&B based on parallel
bounding (up to 100.48).

 The single node-driven approach
is more efficient than the
multiple-nodes driven approach,
especially for large instances.

35

0

20

40

60

80

100

120

140

160

180

20x20 50x20 100x20 200x20

Sp
e

e
d

u
p

s
Flowshop Taillard instances

Multiple-nodes driven approach

Single-node driven approach

Speedups obtained with different GPU–based

approaches (Cont.)

 Only the bounding
operator is on GPU: GB&B

 Branching and bounding
on GPU

 From 14% to 20% of
improvements compared
to GB&B

 Bounding, branching and
pruning on GPU

 Further enhancement
from 10% to 29%

36

0

20

40

60

80

100

120

140

160

180

Ta 20x20 Ta 50x20 Ta 100x20 Ta 200x20

Sp
e

e
d

u
p

s
Flowshop Taillard instances

Multiple-nodes driven approach
Parallel bounding
Parallel branching and bounding
Parallel branchning, bounding and pruning

Comparison for the different approaches in

terms of data transfer

 Performing branching, bounding and pruning operators on
GPU reduce by 50% the average amount of exchanged data

37

 Low Latency GPU-accelerated B&B (LL-GB&B)
 hides the latency induced by data transfers

 Further transfer latency minimization by judiciously
using multiple CPU cores available on nowadays resources

Outline 38

 Context and objectives

 Contributions
 GPU-accelerated parallel B&B - Application to FSP

 Heterogeneous B&B combining GPU and multi-core

 HB&B@GRID: a distributed heterogeneous B&B

 Conclusions and Future Works

ConcuRrent multi-core Low-Latency

GPU-accelerated B&B (RLL-GB&B)

 Challenges related to computation and data partitioning

 Concurrent GPU thread + Concurrent CPU thread

 Concurrent GPU thread

 The idea: thread with highest priority exploits the computing power
of the GPU

 Access to shared variable is handled using locks

39

I. Chakroun, N. Melab, M. Mezmaz and D. Tuyttens. Combining multi-core and GPU computing for solving
combinatorial optimization problems. Journal of Parallel and Distributed Computing (JPDC) – Elsevier.

RLL-GB&B approach:

Concurrent GPU thread

 A tree node is a leaf …

 the best solution is
improved  updated

 the subproblem is
deleted

 Is an internal node …

 inserted in the pool to be
off-loaded to the GPU

 Once the best pool size is
reached (using ASH) …

 the LL-GB&B is executed

40

3.4.2

GPU
Device

1

Pending
nodes Select

Original
problem

Copy device
to host

Best-sol

Copy host
to device

Solve

Update

If leaf
node

If internal
node

3.4.3

3.4.1

3.1.2

3.2.2 3.3.2

Branch Prune

Bound
Solve

Lock

Choose

Lock

3.1.3

3.2.3

3.3.3

Optimal
solution

The concurrent GPU Thread A concurrent CPU Thread

3.1.4

2

3.4.4

3.4

3.3

3.2 If leaf
node

If internal
node

3.1

3.3.1

Begin End

RLL-GB&B approach:

Concurrent CPU thread

Serial B&B

41

3.4.2

GPU
Device

1

Pending
nodes Select

Original
problem

Copy device
to host

Best-sol

Copy host
to device

Solve

Update

If leaf
node

If internal
node

3.4.3

3.4.1

3.1.2

3.2.2 3.3.2

Branch Prune

Bound
Solve

Lock

Choose

Lock

3.1.3

3.2.3

The concurrent GPU Thread A concurrent CPU Thread

3.1.4

2

3.4.4

3.4

3.3

3.2 If leaf
node

If internal
node

3.1

3.3.1

Begin End

Optimal
solution

Performances of the RLL-GB&B

approach

 The more the number of cores is
the worst the speedup is
compared to LL-GB&B

 Average normalized waiting
times

 … the GPU thread is forced to
wait for the lock if it has the
highest priority

 … waiting time increases
according to the number of
concurrent CPU threads

42

 Under-utilization of the GPU by the concurrent GPU thread

  Cooperative approach

 Idea: CPU threads prepare data for GPU using Cuda streaming + GPU (only) explores the tree

CooPerative multi-core Low Latency GPU-

accelerated B&B (PLL-GB&B)

 Avoids synchronization issues and further minimizes the CPU-to-
GPU data transfer latency

 Hides this latency by executing transfers asynchronously with kernel
calls

Overlapping and
interleaving data
transfers and kernel
calls

43

PLL-GB&B: Cooperative CPU thread

 Selects the pool of
nodes to be off-loaded to
the GPU.

 Creates the collaborative
GPU threads.

 Explores some pending
subproblems while the
collaborative GPU
threads are busy.

 Inserts subproblems
returned by collaborative
GPU threads.

44

2.3.2

GPU
Device

Pending
nodes Select

Original
problem

Copy device
to host

Best-sol

Copy host
to device

Solve

Update

2.3.1

2.3.3

2.1.2

2.2.2

Branch Prune

Bound Choose

2.1.3

A cooperative
GPU Thread

The cooperative
CPU Thread

2.1.4

2

2.3.4

2.2

If leaf
node

If internal
node

2.1

Begin End

Copy device
to host

Copy host
to device

A cooperative
GPU Thread

If no GPU
thread

Optimal solution

2.2.1

Parents Children

2.3.3

2.3.1

2.3

PLL-GB&B: Cooperative GPU thread

 A CUDA-stream of ordered
operations associated with
collaborative GPU threads

 Each cooperative GPU thread
handles a part of the pool of
selected nodes, by performing …

 asynchronous transfers to the
GPU device

 calls to branching, bounding and
pruning kernels

 copies of results back to the CPU
host

45

2.3.2

GPU
Device

Pending
nodes Select

Original
problem

Copy device
to host

Best-sol

Copy host
to device

Solve

Update

2.3.1

2.3.3

2.1.2

2.2.2

Branch Prune

Bound Choose

2.1.3

A cooperative
GPU Thread

The cooperative
CPU Thread

2.1.4

2

2.3.4

2.2

If leaf
node

If internal
node

2.1

Begin End

Copy device
to host

Copy host
to device

A cooperative
GPU Thread

If no GPU
thread

Optimal solution

2.2.1

Parents Children

2.3.3

2.3.1

2.3

Performances of the PLL-GB&B

approach

 Speedups increase according to
the instance size and to the
number of cooperative GPU
threads

 Acceleration up to 170
compared to a serial B&B

 Enhancement up to 36%
compared to the LL-
GB&B approach

46

0 50 100 150 200

Ta 20x20

Ta 50x20

Ta 100x20

Ta 200x20

Speedups

 F
lo

w
sh

o
p

 P
ro

b
le

m
 in

st
an

ce
s

Using 5 GPU threads Using 4 GPU threads

Using 3 GPU threads Using 2 GPU threads

Outline

 Context and objectives

 Contributions
 GPU-accelerated parallel B&B - Application to FSP

 Heterogeneous B&B combining GPU and multi-core

 ConcuRrent multi-core Low-Latency GB&B

 CooPerative multi-core Low Latency GB&B

 Low Latency Multi-GPU B&B algorithm

 HB&B@GRID: a distributed heterogeneous B&B

 Conclusions and Future Works

47

Low Latency Multi-GPU B&B algorithm

(LL-MultiGB&B)

 The branching kernel is launched
by CPU thread 1 and executed on
GPU 1

 The resulting pool is moved to the
memory of GPU 2 using the peer-
to-peer access mechanism

 The first CPU thread prepares
the pool of the next nodes to be
explored

 CPU thread 2 launches the
bounding and pruning kernels on
GPU 2

 Applied on the result of
branching (sent by GPU 1)

48

Pending
nodes Select

Original
problem

Copy device
to host

Copy host
to device

GPU 2
Bounding + Pruning

GPU 1
Branching

Best-sol

Solve

Optimal
solution

Update
If leaf
nodes

If internal
nodes

Parents
Prepare
next
Pool of
parents

CPU thread 1

CPU
thread 2

Speedups using single/multiple GPUs

 Speedup up to 217 with 4 GPUs for the (200 x 20) problem instances

49

Outline

 Context and objectives

 Contributions
 GPU-accelerated parallel B&B - Application to FSP

 Heterogeneous B&B combining GPU and multi-core

 HB&B@GRID: a distributed heterogeneous B&B
 The B&B meta-algorithm

 The B&B@Grid approach

 Conclusion and Future Works

50

A large-scale adaptive heterogeneous multi-

core GPU-accelerated B&B algorithm
51

N CPU

1 CPU + 1 GPU

N CPU + N GPU

N CPU + 1 GPU

Overall design of the adaptive

heterogeneous B&B (HB&B@GRID)

 Combining two hierarchical levels of parallelism

 B&B@GRID master-workers approach [Mezmaz et al.,
2007]

 … splits the B&B tree among multiple nodes

 B&B meta-algorithm

 … dynamically selects the parallel B&B to be deployed according to
the underlying configuration

52

The B&B meta-algorithm

 The meta-algorithm detects the
number of supplied CPU cores and
GPU devices

 LL-GB&B: single CPU + single GPU

 MC-B&B: multi-core CPU without
GPUs

 PLL-GB&B: multi-core CPU + single
GPU

 LL-multiGB&B: multi-core CPU +
multiple GPUs

53

The B&B@Grid approach 54

 The approach uses a special
description …

 Each node is assigned a number

 Work unit (collection of nodes) =
an interval

 The approach is Dispatcher-Worker based on the work stealing paradigm

 Dispatcher: maintains a pool of work units (intervals) and the global
solution found so far

 Worker: performs B&B on a given interval and updates the global
solution

0

0

0

1 2

2

3 4

4

5

[0,2] [3,5]

[0,5]

The HB&B@GRID approach: experimental

results

 For a same computational power,
the GPU-based B&B is more
efficient than a distributed
CPU-based B&B

 Using 3 distant GPUs is 5 times
faster than 50 CPUs

 Using 5 GPU devices allows
accelerations twice higher than
those obtained using 500 CPU
cores

55

0

50

100

150

200

250

300

350

A
ve

ra
ge

 S
p

ee
d

u
p

s

Used computational resources

Outline

 Context and objectives

 Contributions
 GPU-accelerated parallel B&B - Application to FSP

 Heterogeneous B&B combining GPU and multi-core

 HB&B@GRID: a distributed heterogeneous B&B

 Conclusions and Future Works

56

Conclusions and general insights

 GPU-accelerated parallel B&B

 Parallel bounding on GPU using branch refactoring and shared
memory allows high speedups (up to ~100 in our work) …

 The computation applied on tree nodes (e.g. bounding function)
should be shared-data intensive and contain conditional
instructions with long branches

 … is more efficient if combined with GPU-based tree exploration
(accelerations up to ~160)

 The overhead induced by CPU-GPU data transfer is minimized by …

 Auto-adapting the size of the pool off-loaded to the GPU and FSP
instance to be solved

 Limiting the granularity of each thread to a single tree node

57

Conclusions and general insights (Cont.)

 Heterogeneous B&B combining multi-GPU and multi-core

 Higher speedups (up to 217 in this work) could be obtained …

 using the cooperative low latency data/work partitioning …

 … based on the CUDA data streaming to further reduce the cost of
CPU-GPU data transfer

 … and the P2P memory access between GPUs

 Large scale B&B (multi-GPU+multi-core+grid computing)

 Heterogeneous B&B meta-algorithm + B&B@Grid

 Auto-adaptive to the target execution hardware configuration

 Solving very large problem instances

 Proof of concept on (20 x 20) FSP instances (4,5h - 108h)

58

Future work

 Extending HB&B@Grid with GPU-level check-pointing …

 … for solving (50 x 20) FSP instances (years of computation!)

 Considering other …

 bounding functions (library): adaptive selection of bounding operator

 exact tree-based methods (B&X), problems

 Ph.D thesis of Rudi Leroy (Maison de la Simulation)

 Investigating other perspectives …

 in-house to energy-aware cloud-based HB&B

 adapting to multi and many-core evolution with more advanced
features (e.g. Kepler GPU - Nvidia GPUDirect, MIC, …)

59

International Publications

International journals (3 accepted + 1 submitted)
 I. Chakroun, N. Melab, M. Mezmaz and D. Tuyttens. Combining multi-core and GPU computing for

solving combinatorial optimization problems. Journal of Parallel and Distributed Computing
(JPDC) - Elsevier.

 I. Chakroun, M.Mezmaz, N. Melab, and A.Bendjoudi. Reducing thread divergence in a GPU-accelerated
branch-and-bound algorithm. Concurrency and Computation: Practice and Experience vol 25, N° 8,
pages 1121-1136, 2013 - John Wiley & Sons.

 N. Melab, I. Chakroun, and A. Bendjoudi. GPU-accelerated Bounding for Branch-and-Bound applied to a
Permutation Problem using Data Access Optimization. Concurrency and Computation: Practice and
Experience John Wiley & Sons.

 I. Chakroun and N. Melab. Towards an heterogeneous and adaptive parallel Branch-and-Bound
algorithm. Journal of Computer and System Sciences - Elsevier (Submitted).

International conferences (4)

 Elsevier Intl. Conf. e on Computational Science (Elsevier ICCS'13)

 14th IEEE Intl. Conf. on Cluster Computing (IEEE CLUSTER'12)

 14th IEEE Intl. Conf. on High Performance Computing and Communications (IEEE HPCC'12)

 9th Intl. Conf. on Parallel Processing and Applied Mathematics (LNCS, PPAM'11)

Book Chapters (1)

 I. Chakroun and N. Melab. GPU-accelerated Tree-based Exact Optimization Methods Designing scientific
applications on GPUs. CRC Press, Taylor & Francis Group.

60

