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Exact Combinatorial Optimization 

 Minimize or maximize an objective function f(Ω): Ω ↦ R 
 

 Find x* ∈ Ω such that f(x*) = (min or max) f(x) / x ∈ Ω. 

 Find optimal configuration(s) among a finite set Ω of candidate 
solutions. 

 

  High-dimensional and complex optimization problems exist 

in many areas of industry 

 Task allocation, job scheduling, network routing, cutting, packing, etc.  
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The permutation Flowshop Scheduling 

Problem (FSP) 

 
 Scheduling a pool of N jobs on a set of M machines  

– Jobs have to be processed on the machines on the same order. 

– A machine Mk(k = 1,2,...,M) can handle at most one job at a time. 

 
 Objective 

- Find a processing order on each 

Mk such that the time required to 
complete all jobs is minimized. 
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Branch and Bound Algorithms (B&B) 

 B&B is a search algorithm based on an implicit 
enumeration of all candidate solutions. 

 Exploration is performed by building a tree. 

 Branching = splitting into sub-problems. 

 Bounding = computing lower/upper bounds. 

 Selection = choosing the fragment node to explore. 

 Pruning = eliminating unpromising branches. 
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Illustration on FSP 

 Scheduling 3 jobs on 4 machines  
      3! = 6 candidate solutions 

 For 50 jobs on 20 machines  
      50! candidate solutions !!!! 
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 Efficient bounding is not sufficient for large instances 

 Several years of computation for Ta056 [Mezmaz et al., IPDPS 2007] 
 

Massive parallelism is required to deal with very large instances. 
 All the parallelism levels provided through today’s heterogeneous platforms 
[Top500] should be exploited 



 Parallel B&B models [Melab 2005] 

 Multi-parametric parallel model 

 Parallel tree exploration model 

 Parallel bounding model 

 Parallel evaluation of a single 
solution/bound 

 

 Parallel bounding model 
 Highly data parallel and attractive 

for SIMD architectures (e.g. GPU) 

 Parallel tree exploration model 
 Massively parallel but highly 

irregular  challenging for GPU + 
multi-core 

B&B process 

B&B process 
B&B process 

B&B process 

Parallel models for B&B 

… 

Evaluation of bounds 

Evaluation of a single bound 
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Parallel Branch and Bound algorithms 

 The implementation of the models is influenced by the target 
execution platform [Roucairol 1996, Bader 2004] 
 

 Many architecture-oriented contributions have been proposed: 
 

 Networks or clusters of workstations [Quinn 1990, Tschöke 1995, Aida 
2002]. 

 Shared memory machines [Mans 1995, Casado 2008]. 

 Graphics Processing Units [Carneiro 2011, Lalami 2012]. 
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 Few existing works related to B&B on GPU 
    Among the two pioneering works 

 No works on parallel heterogeneous (GPU + multi-core) B&B  



Objectives 

 Revisit the design and implementation of B&B algorithms for GPU-
enhanced multi-core environments. 

 The heterogeneous B&B should be portable in a transparent way 
on laptops, workstations, clusters and computational grids. 
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   Dealing with challenging issues related to: 
 

 GPU computing: thread divergence, hierarchical memory 
optimization, CPU-GPU data transfer, … 
 

Multi-core computing: synchronization, ... 
 

Hybrid computing combining GPU and multi-core: work sharing, … 
 

Heterogeneous cluster and grid computing: portability,  scalability, … 



Contributions 10 

 GPU-accelerated parallel B&B Application to FSP 

 Heterogeneous B&B combining GPU and multi-core 

 HB&B@GRID: a distributed heterogeneous B&B 
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Kernel 1 call 
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Copy 
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CPU code 
 

CPU (host) 

GPU (device) 

 Data must be transferred between CPU 
and GPU via the PCI bus express … 

 … many data transfers might become a 
bottleneck for performance [Mahmoudi 
2013] 

 

General GPU-based parallel model 
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 Kernel execution is invoked by 
CPU over a compute grid … 
 

 … split in a set of thread 
blocks 
 

 All threads within the grid run 
the same program 
 

 Single Program Multiple Data 

Grid 

Block (0,0) Block (1,0) 

Block (1,1) Block (0,1) 

Block (1,1) 

Thread (0,0) Thread (1,0) 

Thread (0,1) Thread (1,1) 

Programming model: thread-based SPMD 

Thread (2,0) 

Thread (2,1) 
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CPU scalar op  GPU Multiprocessor 

Execution model: SIMD 

 GPU architectures are based on hyper-threading 

 Fast context switching  … 

 … between warps when stalled (e.g. an operand is not ready) 

 … enables to minimize stalls with little overhead 

 Single instruction executed on multiple threads (SIMT) 
grouped into warps (32 threads) 

 



Thread divergence issue 

Full efficiency achieved when all threads  agree on their 
execution path  

 If threads of a warp diverge via a data-
dependent conditional branch …  

 … the different branch paths 
(threads) are executed serially 

 
 When all paths complete 

threads converge back to the same 
execution path 
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GPU 

Constant 
Memory 

Texture 
Memory 

Global  
Memory 

Block 0 

Shared Memory 

Local 
Memory 

Thread 0 

Registers 

Local 
Memory 

Thread 1 

Registers 

Block 1 

Shared Memory 

Local 
Memory 

Thread 0 

Registers 

Local 
Memory 

Thread 1 

Registers 

CPU 

Memory type Access latency Size 

Global Medium Big 

Registers Very fast Very small 

Local Medium Medium 

Shared Fast Small 

Constant Fast (cached) Medium 

Texture Fast (cached) Medium 

- Different hierarchical 
memory levels … 

- … with different sizes and 
latencies 

Hierarchical memory levels 
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GPU-accelerated B&B based on parallel 

bounding (GB&B)  

 Generation (selection and 
branching) and pruning of the 
subproblems …  

 … are performed on CPU 

 

 Evaluation of their lower bounds …  

 … is executed on the GPU device 
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 Bounding consumes on average  97% - 99% of the B&B 
execution time 



Thread divergence in FSP 

 Lower bound proposed by [Lenstra et al. 1978] based on [Johnson 1954] 

 Divergence related to the control flow instructions (if-then-else, for, …) 

 When the first thread executes else 
branch, the remaining threads are 
disabled 

 

 All threads finish the first 10 
iterations together + two passes for 
the 90 other iterations 

 

18 



Reducing thread divergence 

Branch refactoring = rewrite the conditional instructions into an 
uniform code  

19 

I. Chakroun, M.Mezmaz, N. Melab, and A.Bendjoudi. Reducing thread divergence in a GPU-accelerated branch-and-bound 
algorithm. Concurrency and Computation: Practice and Experience vol 25, 8, 1121-1136, 2013 - John Wiley & Sons. 



Memory access optimization 

Mapping of the LB data structures on the memory hierarchy 
of the GPU 

 GPU memories have different sizes and 
access latencies 
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 Complexity analysis: The LB function uses 
6 data structures with different sizes and 
access latencies/frequencies 



Memory access optimization (Cont.) 

 Memory size issue 

 Nvidia Tesla T10 Processor with 16 KB of shared memory 

Which data must be put in the shared memory to get the best 
performance?   
different explored scenarii. 
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N. Melab , I. Chakroun, M. Mezmaz and D. Tuyttens. A GPU-accelerated Branch-and-Bound Algorithm for the Flow-
Shop Scheduling Problem. 14th IEEE International Conference on Cluster Computing, Cluster'12 (2012)".  

  JM and LM do not fit into the shared memory which size is limited 



Experimental settings 

 Taillard's FSP benchmarks proposed in [Taillard 1993] 
 

 Optimal solutions of some of these instances are still not known 

 Divided into groups of 10 instances defined by the same N and M 

 Only the instances where M = 20 and N = 20, 50, 100, 200 are considered 

 Instances with M = 5 and 10 are easy to solve 

 Instances with 500 jobs do not fit in the memory of the GPU 

 

 Software and hardware platforms 
 

 C-CUDA 4.0. 

 CPU host: Intel Xeon E5520 quad-core 64-bits server 

 GPU device = Nvidia Tesla C2050  

 448 CUDA cores, warp size = 32, global memory = 2.8GB, configurable shared 
memory (16 KB or 48 KB) 
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Performance evaluation of GB&B 

• Speedup up to 71.69 is obtained 

 

• Speedup grows with the size of the 
problem 

 

• The pool size has a high 
impact on the performance of 
GB&B 
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 the pool size has to be tuned dynamically with respect 
to the problem being solved. 



Performances evaluation of GB&B (Cont.) 
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 Thread reduction approaches 

 Best reported speedup is 77.46 

 Divergent branches on average 3 times less 

 

 Data access optimization 

 PTM on shared memory …. enhancement of 19% 

 JM on shared memory …. acceleration of 97.83 

 JM and PTM on shared memory ….. 23% of improvement 
compared to the scenario with no data access optimization 

 
 Speedup of 100 is reached for large  problem instances 



Performance analysis of GB&B 25 

 Time consumption analysis of the different steps … 

 First, the pool size should be dynamically tuned 

Second, the CPU-GPU transfer latency should be minimized 



An adaptive selection operator: 
Adaptive Selection Heuristic (ASH) 

 Calibrates the two parameters …  
 Maximum number of threads and 

blocks 
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 The ASH heuristic 

 The number of threads per 
block is doubled repeatedly … 

 … until the maximum number 
of active threads allowed on 
the device is reached 

 A downwards and an 
upwards search around the 
best pool size found so far 

 

 



Performance evaluation of the ASH heuristic 

Same speedups obtained with the same best pool sizes of the static version 
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Performance analysis of GB&B 

 First, the pool size should be dynamically tuned 

Second, the CPU-GPU transfer latency should be minimized 
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 Time consumption analysis of the different steps … 



GPU-based parallel tree exploration  

 Moving to GPU the branching and pruning operators 
 

 Even if they consume less time than the bounding operator, they 
allow to reduce the data transfer between CPU and GPU 

 

Higher performances should be achieved 
 

 Two proposed and studied approaches 

 Multiple-nodes driven approach 

 Each thread performs in parallel B&B operators on multiple tree nodes 

 Single-node driven approach 
 Consecutive data-parallel kernels where threads compute in parallel the same 

amount of work on a single tree node 
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I. Chakroun and N. Melab. Operator-level GPU-accelerated Branch and Bound algorithms. International 
Conference on Computational Science, ICCS 2013. Barcelona, Spain, June 5-7, 2013. 



Multiple nodes-driven approach 

 Divide the search space 
into disjoint sub spaces 
 

 To each thread is assigned a 
node from the selected nodes. 

 Mapping strategy (next slide) 

 

 Each thread builds its local 
search tree by applying the 
branching, bounding and 
pruning operators to its 
assigned node 

 

 Resulting nodes are moved back 
to CPU. Other nodes 
are deleted on the device 
memory 
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Multiple nodes-driven approach (Cont.) 31 

 Mapping strategy 

 Thread i branches the node i of the pool, thread i+1 branches the 
nodes i+1, and so  on. 

 Each thread writes the nodes it generates in an allocated range:  
position of thread i depends on the number of children of 
the thread i-1 

 Challenging issues 

 Uncoalesced memory accesses 

 Thread divergence due to the high irregular nature of the tree 

 

 



How much irregularity in the B&B?  

Intra-instance irregularity 

Structure of the search tree for the instance 
Ta023: 20 jobs on 20 machines 

 At the same level (depth 10) … 

 53% of nodes have 0 
children, 23% have 1 child, 
11% have 2 children, etc. 

 
 At different levels 

 41% of nodes have 17 
children at depth 2 vs. 1% at 
depth 3 
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 Solution: single node-driven approach 



Single node-driven approach 

 The same amount of work on each tree 

node 

 Branching kernel 

 Each thread generates a unique child and 

inserts it into a global pool 

 Bounding kernel 

 The pool is kept in the global memory and 

used by the bounding kernel 

 Each thread assigns a lower bound to a 

unique node 

 Pruning kernel 

 The evaluated pool is  kept in the device 

memory and used by the pruning kernel 
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Single node-driven approach (Cont.) 

 Mapping strategy 

 Thread i writes the generated node i in the position i 

 All threads execute exactly the same flow of instructions 

    Prevents from thread divergence 

 

  The approach prevents from  
the uncoalesced accesses to the 
global memory 

 Memory accesses constitute a 
contiguous range of addresses. 
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Speedups obtained with different GPU-based 

approaches 

 GPU-based parallel tree 
exploration using the single 
node-driven approach … 
 

 … allows further speedups (up 
to 160.41) than the GPU-
accelerated B&B based on parallel 
bounding (up to 100.48). 

 

 The single node-driven approach 
is more efficient than the 
multiple-nodes driven approach, 
especially for large instances. 
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Speedups obtained with different GPU–based 

approaches (Cont.) 

 Only the bounding 
operator is on GPU: GB&B 
 

 Branching and bounding 
on GPU 

 From 14% to 20% of 
improvements compared 
to GB&B 
 

 Bounding, branching and 
pruning on GPU 

 Further enhancement 
from 10% to 29% 
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Comparison for the different approaches in 

terms of data transfer 

 Performing branching, bounding and pruning operators on 
GPU reduce by 50% the average amount of exchanged data 
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  Low Latency GPU-accelerated B&B (LL-GB&B) 
 hides the latency induced by data transfers 

 

 Further transfer latency minimization by judiciously 
using multiple CPU cores available on nowadays resources  
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ConcuRrent multi-core Low-Latency  

GPU-accelerated B&B (RLL-GB&B) 

 Challenges related to computation and data partitioning 

 Concurrent GPU thread + Concurrent CPU thread 

 Concurrent GPU thread 

 The idea: thread with highest priority exploits the computing power 
of the GPU 

 Access to shared variable is handled using locks 

39 

I. Chakroun, N. Melab, M. Mezmaz and D. Tuyttens. Combining multi-core and GPU computing for solving 
combinatorial optimization problems. Journal of Parallel and Distributed Computing (JPDC) – Elsevier. 



RLL-GB&B approach:  

Concurrent GPU thread 

 A tree node is a leaf … 

 the best solution is 
improved  updated 

 the subproblem is 
deleted 

 

 Is an internal node … 

 inserted in the pool to be 
off-loaded to the GPU 

 

 Once the best pool size is 
reached (using ASH) … 

 the LL-GB&B is executed 
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RLL-GB&B approach:  

Concurrent CPU thread 

Serial B&B 
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Performances of the RLL-GB&B 

approach 

 The more the number of cores is  
the worst the speedup is 
compared to LL-GB&B 

 Average normalized waiting 
times 

 … the GPU thread is forced to 
wait for the lock if it has the 
highest priority 

 … waiting time increases 
according to the number  of 
concurrent CPU threads 
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 Under-utilization of the GPU by the concurrent GPU thread 

    Cooperative approach  

    Idea: CPU threads prepare data for GPU using Cuda streaming + GPU (only) explores the tree 



CooPerative multi-core Low Latency GPU-

accelerated B&B (PLL-GB&B) 

 Avoids synchronization issues and further minimizes the CPU-to-
GPU data transfer latency 
 

 Hides this latency by executing transfers asynchronously with kernel 
calls 

Overlapping and 
interleaving data 
transfers and kernel 
calls 
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PLL-GB&B: Cooperative CPU thread 

 Selects the pool of 
nodes to be off-loaded to 
the GPU. 

 

 Creates the collaborative 
GPU threads. 

 

 Explores some pending 
subproblems while the 
collaborative GPU 
threads are busy. 

 

 Inserts subproblems 
returned by collaborative 
GPU threads. 
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PLL-GB&B: Cooperative GPU thread 

 A CUDA-stream of ordered 
operations associated with 
collaborative GPU threads 

 

 Each cooperative GPU thread 
handles a part of the pool of 
selected nodes, by performing … 

 asynchronous transfers to the 
GPU device 

 calls to branching, bounding and 
pruning kernels 

 copies of results back to the CPU 
host 
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Performances of the PLL-GB&B 

approach 

 Speedups increase according to 
the instance size and to the 
number of cooperative GPU 
threads 

 Acceleration up to 170 
compared to a serial B&B 

 Enhancement up to 36% 
compared to the LL-
GB&B approach 
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Low Latency Multi-GPU B&B algorithm 

(LL-MultiGB&B) 

 The branching kernel is launched 
by CPU thread 1 and executed on 
GPU 1 

 The resulting pool is moved to the 
memory of GPU 2 using the peer-
to-peer access mechanism 

 The first CPU thread prepares 
the pool of the next nodes to be 
explored 

 CPU thread 2 launches the 
bounding and pruning kernels on 
GPU 2 

 Applied on the result of 
branching (sent by GPU 1) 

48 

Pending 
nodes Select 

Original 
problem 

Copy device 
to host 

Copy host  
to device 

GPU 2 
Bounding + Pruning 

GPU 1 
Branching 

Best-sol 

Solve 

Optimal 
solution 

Update 
If leaf 
nodes 

If internal 
nodes 

Parents 
Prepare 
next 
Pool of 
parents 

CPU thread 1 

CPU  
thread 2 



Speedups using single/multiple GPUs 

 Speedup up to 217 with 4 GPUs for the (200 x 20) problem instances 
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A large-scale adaptive heterogeneous multi-

core GPU-accelerated B&B algorithm 
51 
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Overall design of the adaptive 

heterogeneous B&B (HB&B@GRID) 

 Combining two hierarchical levels of parallelism 

 B&B@GRID master-workers approach [Mezmaz et al., 
2007] 

 … splits the B&B tree among multiple nodes 

 B&B meta-algorithm 

 … dynamically selects the parallel B&B to be deployed according to 
the underlying configuration 
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The B&B meta-algorithm 

 The meta-algorithm detects the 
number of supplied CPU cores and 
GPU devices  

 

 LL-GB&B:  single CPU +  single GPU 

 MC-B&B: multi-core CPU without 
GPUs 

 PLL-GB&B: multi-core CPU + single 
GPU 

 LL-multiGB&B: multi-core CPU + 
multiple GPUs 
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The B&B@Grid approach 54 

 The approach uses a special 
description … 

 Each node is assigned a number 

 Work unit (collection of nodes) = 
an interval 

 The approach is Dispatcher-Worker based on the work stealing paradigm 

 Dispatcher: maintains a pool of work units (intervals) and the global 
solution found so far 

 Worker: performs B&B on a given interval and updates the global 
solution 
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The HB&B@GRID approach: experimental 

results 

 For a same computational power, 
the GPU-based B&B is more 
efficient than a distributed 
CPU-based B&B 

 

 Using 3 distant GPUs is 5 times 
faster than 50 CPUs 

 

 Using 5 GPU devices allows 
accelerations twice higher than 
those obtained using 500 CPU 
cores 
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Outline                                           

 Context and objectives 

 Contributions 
 GPU-accelerated parallel B&B - Application to FSP 

 Heterogeneous B&B combining GPU and multi-core 

 HB&B@GRID: a distributed heterogeneous B&B 

 Conclusions and Future Works 

 

56 



Conclusions and general insights 

 GPU-accelerated parallel B&B 

 Parallel bounding on GPU using branch refactoring and shared 
memory allows high speedups (up to ~100 in our work) … 

 The computation applied on tree nodes (e.g. bounding function) 
should be shared-data intensive and contain conditional 
instructions with long branches 

 … is more efficient if combined with GPU-based tree exploration 
(accelerations up to ~160) 

 The overhead induced by CPU-GPU data transfer is minimized by … 

 Auto-adapting the size of the pool off-loaded to the GPU and FSP 
instance to be solved 

 Limiting the granularity of each thread to a single tree node 
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Conclusions and general insights (Cont.) 

 Heterogeneous B&B combining multi-GPU and multi-core 

 Higher speedups (up to 217 in this work) could be obtained … 

 using the cooperative low latency data/work partitioning … 

 … based on the CUDA data streaming to further reduce the cost of 
CPU-GPU data transfer 

 … and the P2P memory access between GPUs 

 Large scale B&B (multi-GPU+multi-core+grid computing) 

 Heterogeneous B&B meta-algorithm + B&B@Grid 

 Auto-adaptive to the target execution hardware configuration  

 Solving very large problem instances  

 Proof of concept on (20 x 20) FSP instances (4,5h - 108h) 
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Future work 

 Extending HB&B@Grid with GPU-level check-pointing … 

 … for solving (50 x 20) FSP instances (years of computation!) 

 Considering other … 

 bounding functions (library): adaptive selection of bounding operator 

 exact tree-based methods (B&X), problems 

 Ph.D thesis of Rudi Leroy (Maison de la Simulation) 

 Investigating other perspectives … 

 in-house to energy-aware cloud-based HB&B  

 adapting to multi and many-core evolution with more advanced 
features (e.g. Kepler GPU - Nvidia GPUDirect, MIC, …) 
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